
AD-A10S 718 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPNENT CE--ETC F/6 12/S
OPTIZZATION OF REINFORCEMENT FOR A CLASS OF OPENINGS IN PLATE -- ETCWU}
SEP 81 S O DHIR

UNCLASSFXED DTNSRC/CNLO-81-25 NL

lIhEIIIu..



'--4tt

DAVID W. TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084
*z

* OPTIMIZATION OF REINFORCEMENT

FOR A CLASS OF OPENINGS

IN PLATE STRUCTURES

by

S.K. Dhir

z
w

M/
C

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED -i

o4

0

~COMPUTATICII, MATHEMATICS & LOGISTICS DEPARTMENTr

~RESEARCH AND DEVELOPMENT REPORT

-I 4

S..DTNSRC SW2130J 19
-L upersodl 3160/46)



MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC

COMMANDER 00
TECHNICAL DIRECTOR

OFFICER-IN-CHARGE OFFICERIN-CHARGE
CARDEROCK 0 1 ANNAPOLIS 0

SYSTEMS

DEVELOPMENT
DEPARTMENT

11

SHIP PERFORMANCE AVIATION AND

DEPARTMENT SURFACE EFFECTS
15 DEPARTMENT

16

SRC E COMPUTATION
STRUCTURES AND MATHEMATICS

17 DEPARTMENT 18

SHIP ACOUSTICS I PROPULSION AND
AUXILIARY SYSTEMSDEPARTMENT DEPARTMENT 27

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION

28 DEPARTMENT 29

NDW-DTNSRDC 3960/43 (Rev. I 11-75
GPO 905 .679

WIN-



UN( LASS L F1 ED
S-A ',IF 1, A~t 1)N JF T HI', PAGE (14hen Dat& Enrtered)

REAL) INSTRU( TIONSREPORT DOCUMENTATION PAGE BEFORE ('OMPLETIN(; I-ORM

. GOVT ACCESSION NO ErE
9

IENT'S CATALOG NUMBERTNsDC/cMD-1- 25 :L ).¢ S0
T1% .E and S ,brit,) I ~IO O OVERE O

* In~terim e
OPTIMIZATION OFWINFORCEMENT FOR A CLASS OF Oc Aug 081-.

9PENIN;S IN PtjATE STRUCTURES 6 PRFORMINGORG REPOR B

7 AJ't. ~, 11 8 CONTRACT OR GRANT NUMBER(,)

* Surendra K./Dhir

9 PERFORMING ORGANIZA ION NAME AND ADCRESS 10 PROGRAM- L ' NT PROJEC T11(
David W. Taylor Naval Ship R&D Center AREA & WOIK uNIT NJMBERS

Program E acn .61i3N
Bethesda, Maryland l)084 lask hreo SRl14301..

......_ __ _ _ _ Work Uitit 1-1860k-O] 0 _

,, CONTRGL,C, oFVt - NAME AND ADDRESS IZ..rPQN3.* -

-S epbu81

ON G GC NM A n13 NUMBER OF PAGES
4- 17

14 M4ONITORING AGENCY NAME &At'DDRESS(It different IS- C.troll.n Oice) 15. SECURITY CLASS. (of thl report)

UNCLASSIFTED

I~J'5. DECLASSIFICATION DOWNGRADING
I A SCH EDU LE'

IJ - 'P ON STATE0IENTI'r-It lrr F'

,'FROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17 BI OTION STATEMENT (of the ahstract entered In Block 20, It different from Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it necesery md identify by block number)

Stress Analysis
Plate Structures
optimization

20 OISTRACT (Continue on revree side It neceesry and identify by block number)

A numerical/analytical procedure has been developed which yields the optimum

amount of reinforcement for a given hole shape in a large elastic plate

under prescribed boundary stresses. This procedure is based on determining

the usual two complex potentials which describe the entire stress field,

constructing the strain energy density function in terms of the unknown

amount of reinforcement, integrating this function around the opening

boundary, and finally minimizing this integral with respect to the

reinforcement. - 4 - (Continued on reverse side) v 't

DD I A 1473 EDITION OF INOVS IS OSSOLETE UNCLASSIFIED
S 'N 0102-LF.014-6601 F

SECURITY CLASSIFICATION OF Tis PAGE (IAn D. ered



IIt

UNCLASS IFIED

SLCURITY CLASSIFICATION OF THIS PAGE (Who. Dot& £nIored)

20. (Continued).

The method is first developed f or a general hole shape and then

demonstrated in some detail for a circular and a square-like opening.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*7h.n Date Ento,.d)



TABLE OF CONTENTS

Page

ABSTRACT .............. ............................. I

INTRODUCTION ........................... . 1 

MATHEMATICAL PRELIMINARIES .......... .................... 2

OPTIMIZATION ............. ........................... 5

EXAMPLES .............. ............................. 7

CONCLUSIONS .......... ........................... . 12

REFERENCES ........... ............................ . 14

LIST OF FIGURES

FIGURE 1 - Various Boundary Stresses Around a Square-Like
Opening with Optimum Reinforcement . ......... . 13

LIST OF TABLES

TABLE I - Optimum Boundary Stresses Around a Square-Like
Opening with Optimum Reinforcement .. ........... 8

TABLE 2 - Minimized Boundary Stresses Around a Square-Like
Opening with Optimum Reinforcement .. .......... .. 11

Acce 3l!n For

NTIS G"41I
DTIC T .. 1 
Lbiannour .ed
justf icato-- -

By
Distribution/_

Availability Codofl" - .Avil and/or

iI I I Ill l



ABSTRACT

A numerical/analytical procedure has been
developed which yields the optimum amount of rein-
forcement for a given hole shape in a large elastic
plate under prescribed boundary stresses. This pro-
cedure is based on determining the usual two complex
potentials which describe the entire stress field,
constructing the strain energy density function in
terms of the unknown amount of reinforcement,
integrating this tunction around the opening boundary,
and finally minimizing this integral with respect to
the reinforcement.

The method is first developed for a general hole
shape and then demonstrated in some detail for a cir-
cular and a square-like opening.

INTRODUCTION

The use of reinforcements at the boundaries of openings is standard prac-

tice in ship and aircraft construction. The amount of reinforcement to be

used is determined, in most cases, by somewhat arbitrary decisions regarding

the percentage reduction it produces in the boundary stress maximums.

Although intrinsically there is nothing wrong with this approach, it seems to

lack a rational basis or criterion for helping the structural designer select

a specific amount of reinforcement. The procedure presented in this paper is

an effort to prouide such a basis. Rather than determining the stress field

corresponding to a given geometry of the opening and of the reinforcement,

this procedure seeks to determine that reinforcement which minimizes a certain

meaningful integral related to the boundary strain energy. In this way it is
1-3

an inverse elasticity problem. Some investigators ,in studying the

related problem of optimizing unreinforced notch shapes in plates, have con-

cluded that uniform tangential stress at the notch boundary would, in general,

lead to the smallest stress concentrations. Intuitively, it appears justitied

to assume that in the case of reinforced notch boundaries the requirement of

uniformity of boundary stresses and/or stress related quantities, such as

strain energy etc., at the notch boundary would lead to more desirable

designs. The optimization rationale used in the present procedure is based on

this argument.

q 1



in general, stress analysis of a non-circular opening reinforced with a

thin member of uniform cross section is very difficult because it requires the

satisfaction of a boundary condition which contains an irrational term. How-

ever, the use of MACSYMA (a symbolic manipulation language developed at MIT

and in use at DTNSRDC) makes it possible to solve such problems, since a

larger number of terms can be retained and manipulated in various expansions

without losing track of them in the enormously long and complex algebraic

expressions.

The general form of the boundary condition used in this method is

developed in reference 4. The special cases of reinforcement of a circular

opening and a square-like opening are discussed in greater detail and actual

numerical results are included.

This paper is a logical extension of the work described in reference 5

which dealt with the optimization of the shape of a class of unreintorced

openings in large plates.

MATHEMATICAL PRELIMINARIES

An opening of general shape in a large elastic plate of isotropic

material of unit thickness is reinforced by a thin member of cross-sectional

area A capable of withstanding axial forces only. Then, if the opening can be

mapped into a unit circle by a function z(1), the equivalence of complex

forces between those in the reinforcement and those in the plate at the open-

ing boundary ( = ) is given by 4

z (G) + '(a) + C (1)
) + z '(Y) + (a) P z'(o)

where (0) and 4 (o) are the values of the functions ( t ) and

p(r,) at the opening boundary, P is the axial force in the reinforcement,
lB

a equals e , and C is an arbitrary constant. Equivalence of tangential

strain at the boundary requires

P = A (0 -v a) (2)

2

t .. .. ... .... ...



and the elastic equilibrium of a boundary element requires

a = P

(3)
i P

T -TaB - z 3 , -

where the argument 0 of the function z has been omitted for brevity and

prime indicates differentiation with respect to .

The well-known relations between the stresses, G , o , and T and

the functions, ( ) and , ( t), and Equations (2) and (3) can be used to

show that

i' V 'T [A (1+v) + N=1 2A (W'' ZI + 4 z') (4)

Equation (i) can be modified to

( + 0)z' + z' C y P Vz I (5)

where the argument 0 has been omitted, for brevity, for the 4 , 4 , and

z functions; prime indicates differentiation with respect to the argument a ;

and a bar (-) represents the complex conjugate of the function. Since P is a

real quantity, it is possible to represent

P ' = e (n + (6)
n nn=O

where the c are real. Functions 4 ( ) and ) ( ) are known to have then

following form: a n

n
~(7)

- DC +
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where p + q

4

p- q -218
D=- e

2

and p and q are uniform stresses at infinity at an angle 8 to the x- and y-

axes, respectively. The mapping function z( ) can be conveniently

represented by

z(W) = R + n (8)

wnere m are known constants and R is a size factor which will be assumedn
unity.

The problem can now be stated in two parts: (a) For a given mapping func-

tion z( ), determine the functions r ( C ) and ' ( ) as a function ot the

area of reinforcement A; and (b) determine that value of A which minimizes a

certain meaningful integral related to the boundary strain energy.

Clearly the solution of part (a), which forms the basis for the solution

of part (b), would require the determination of a and b such that Equa-n n

tions (4) and (5) are satisfied.

Substitution of Equations (6), (7) and (6) into the boundary condition,

Equation (5), and its ensuing solution generates one set of linear simultane-

ous Equations between a and c and another set between a bnn n n n

and cn both of which satisfy this boundary condition. Values of a in
n , n

terms of cn can be determined from the first set and substituted in Equation

(4) to determine cn in terms of A by using an expansion of the irrationai

term . Taylor series expansion of this term at C = U appeared to

be a reasonable choice, and it was seen that, for the demonstration problem ot
6

a square-like hole, an accuracy of I in 10 could be obtained at the hole

boundary by using the first eight terms after the constant term. once

the en are known, the two sets of simultaneous equations can, in principle,

be solved to obtain an  and bn in terms of the unknown quantity A. The

4



basic information for the optimization problem is then available.

OPTIMIZATION

The strain energy density, V , of a plane elastic system is given by

V = _L 12 + a2 - 2voa8  + 2(+v) 2 ](8)

With Equations (2) and (3), this expression for V can be transformed to
0

V - + 2 (1+v)] P2 + 4(1+) (P) 20 4E 2 - -- + _L (9)
A Z Z z Ig

!

The area of reinforcement, A, as it occurs in Equation (9) is a dimen-

sionless quantity since it has been divided by the unit thickness of the plate

as well as by the unit size factor R of the mapping function.

For specific loading conditions, the strain energy density, V , a func-

tion of B and A only, can be integrated with respect to 6 from U to

2 T to obtain an integral, I, which can be interpreted as the strain energy

in a thin region of variable thickness around the opening. This integral can

now be minimized with respect to A to obtain that value of A which leads to

the "most uniform" distribution of V around the opening. The term "most0 -'

uniform" conveys the meaning that, of all the possible parametric variations

of V corresponding to A, this particular distribution would have strongly
O 5 "

attenuated peaks.

A distinction must be made between this integral, i, and the actual

strain energy, V, in a thin slice around the opening. The strain energy

itself will be obtained by integrating V with respect to ds. Since ds is

given by fz'z' dB , the strain energy will be

V Jv z d8 (10)

5
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It can be expected that a minimization of V with respect to A will lead

to the "most uniform" distribution of V Vzz rather than that of

V around the opening. The integral, I, was previously calculated, within a
0

constant, in reference (5) for a square-like unreinforced opening to determine

its optimum shape. For S = .25 and D = -.5 the integral,l,was found to have a

minimum value of 0.3627 at m = -.05. This value of m produced a very desir-

able stress distribution and the lowest stress concentrations since for an

unreintorced opening the integrand, V , of I was a2 . For comparison,0

when this case was later repeated by minimizing V such that the integrand was

f; , the minimum value of V within the same constant was found to be

0.3705 at m -.07. The corresponding stress distribution around the opening

is less desirable than when m = -.05. in fact,the highest stress concentra-

tion toi a = -.07 was 2.505 versus 2.472 for m = -.05. Nevertheless,

the 2 z'' distribution can be expected to be "most uniform" at m = -.07

and the "-distribution is the "most uniform" at m = -.05. From an

enginuering stand point the "most uniform" Y2 - distribution will

obviously be preferable. Other more mathematical reasons for choosing to

minimize the integral of B2 are included in reference 5.

The preceding discussion justifies the use of the integral, I, rather

than the strain energy, V, as the quantity to be minimized for determining the

optimum A. in summary, minimization of 1 should, in general, be expected to

lead to the "most uniform" V - distribution and minimization of V to the

"most unitorm" Vo Yzz- distribution. It can also be expected, as evidenced

in the case of the unreinforcea square opening, that "most uniform" V -

distribution would result in smaller V values.

At this point it should be mentioned that consideration was also given to

determining optimum A based on attenuation of other relevant quantities such

as the distortion energy density (equivalent to attenuation of the octahedral

stress), the dilatation energy density, the maximum shear stress, and the max-

Lmum principal stress. All these quantities except the last are either as

difficult or, in fact, simpler to attenuate than the strain energy density.

Since the attenuation of the maximum principal stress is in general, consider-

ably more difficult to perform (and not necessarily most desirable), tie

strain energy density was selected, in the case of the square-like hole, as a

6



typical quantity to be attenuated. In tile case of the circular hole other

quantities were also investigated for comparison.

EXAMPLES

[. Gircuiar Opening

in thIs case tie irrational terms in Equations k3), (4), and (5) disap-

pear, so the manipulations are rather straight forward. Another point to be

noted is that tot a circular opening the strain energy, V, is the same as the

integral 1. Omitting all the intermediate manipulations, the striin cmic.,y.

V, can be given by

v 8 r 2(l + 0.91-A 2 + (1 + 131A2 )D(a
E (1 + 1.3A) 2  

(1 + 3.3A)2

tle energy of distortion, VD , or the integral of the square i' uK tahle'dI,
2

stress, TOct , can be given by

VD , *.Toct 13.8671T 2(l-0.4A+O.79A 2)S2 + (l-O.4A+12.79A 2)D -E dl 2(1+ .3)21+33A2 (1bJD =2E d6 - LE (13A) 3.3A) 2  -j(lb

the energy due to change in volume, V v  , can be given by

v = 2.13T LS2 + (1 + 1.3A) 2  D 11
v 2E (1 + 3.3A) 2lc)

and finally the integral, T, of the square of maximum snear stress call ),,

given by

2( -1.4A + 0.49A
2 )S 2  (1 - 1.4A + 16.49A2)D2

T 16w 1.A 2 - + 2. . 11id -

(1 + 1.3A) (1 + 3.3A)

7



TABLE 1 - OPTIMUM VALUES OF REINFORCEMENT FOR A CIRCULAR HOLE

SUBJECT TO VARIOUS TYPES OF LOADS:

ATTENUATED STRAIN DISTORTION VOLUME MAX SHEAR
QUANTITY ENERGY ENERGY ENERGY STRESS

DENSITY DENSITY DENSITY SQUARED

LUAD_
CtkSES V A V A V A T A

Isotropic 2.8 1 1.7331 1.067r 01.4286 1.4286 0 1.4286
s=u.5; )=o 2 2E 2E

Lniaxial 3.074w 2.584w 0.3497 **

S=).25; D=-U.5 2E .4429 2E .4033 2E 2.7177 .3422

Pure Shear 8.15r .2918 7.072 . 0.3317 **S=2918- 2E2E .2602 2E 8w .2127b=;D=I2E 2E 2E

* Indicates that Vv  is independent of A

** - Infinity refers to a rigid reinforcement

The quantities V, VD  , Vv  , and T were minimized to determine the

optimum values of A. These computations were performed for a number of load

cases as shown in Table 1. The values of A at which the minimums occurred and

the corresponding rminimized quantities are included in this table.

fhe tact that such optimum reinforcements can exist is intriguing. A

popular definition of A is the ratio of area replaced as reinforcement to the

area removed by the opening. Thus in the uniaxial case, if approximately

44.3% of the area removed by the opening is replaced by the reinforcement, the

resulting stress distribution would be very desirable, i.e., one that would

result in a relatively smooth boundary strain energy density distribution.

The actual stress distributions corresponding to the cases in Table I can be

obtained using equations derived in reference 6.

8



11. Square Opening

The algebraic manipulations in this case are considerably more involved

and lengthier than for the circular opening. A square opening described by

0.05z =o - (12)
3

was chosen for this example because of its optimum square-like shape . Solu-

tion of Equations (4) and (5) and integration of Equation (9) required the use
- , - - 1

of the irrational terms (z'-') , (z , and (z'z') which were

conveniently represented by Taylor series of the

type y Gn 4n + -4n), c.f. Equation (15).In all cases truncation
n,0 6

after eight terms could maintain an accuracy of 1 in 10 in the boundary

values of these expansions. Equation (5) produced two sets of equations, the

soiution of one of which is given by

a2n-16n,lmal = c2n + 3ma2n+3 + 6 n,2mS - 6n, D

n >t (13)

a2n 0

where m = -0.05. It is easy to see from Equation (13) that, if either

a or c is truncated, the values of individual a can be easily deter-n nl n ,
mined in terms of c . Because of the small value of m, the final results

n
converged within I in 10 when the a beyond n = 13 were truncated. once

n
the a were determined, the b could be determined using the other set ot

n n
equations. However, this procedure was not necessary since the alternative

procedure for accomplishing the solution, described in the next paragraph, was

more direct.

The a and Taylor expansion of V iwere substituted in Equation (4)
n

to obtain cn , given by

C = 0 ;n > 1

c4n P4n,k AkS/ k Ak  ; 4 > n > 0 (14)
k\4 4

c(4- k A)D/ : rk A k ;4 > n >1

9



where p n qn , and r are known coefficients but are not included here.n

Once the c were obtained, the problem was basically solved as a func-

tion of the area of reinforcement A. The c were substituted in Equation (6)
to obtain P z which, in turn, was substituted in Equation (9) to

obtain V . The stresses a , OB , and T could be obtained using

Equations (2) and (3). in order to integrate V , the following Taylor
O

expansions were used:

8
S(a- n4n +  -4n

r ~(z) L4no +
n=0 (15)

-1 ( 4n  -4n

(z'z')-I EMI 4n +

n=O

These expansions, with the now known p yielded

8

P = E P2ncos 2n8

n=0

8 (16)

P(z ) = I Q2n
cos 2n

n=O

which were used to obtain the integral

fI = dB = 21

-- = + 2(1-v )1 + 4(l+\)T (17)
0 A (17

where

1(P 02 + _ 8 2
I 2E o 2 1 2n

n=l

I2 2E 0 2 Q 2n (8

n=l (18

3 M Mo (2nP n) 2+ 2n 2M 2n +R

The R , given as sums of products p p , are coefficients of cos nB in
n / p\2 m n

the expression \ . The minimum value of I, which in Equation (17) is

a function of A, S, and D only, was determined by simply evaluating I at

10



various values of A for a selected set of values of S and D. In fact, the

three cases considered were the isotropic case (S = .5, D = 0), the uniaxial

case (S = .25, D = -.5), and the pure shear case (S - 0, D = -1). The

corresponding A's at which the minimum values of I occurred were 0.90, 0.41,

and 0.29. These minimum values of I could be directly compared to those of
2E

reference (5), if they were first multiplied by -6- . The I values for

these three cases were found to be .2453, .1920, and .4771, respectively. It

should be noted that since the value of m for all three cases was -0.05, the
5

initially unreinforced shape is optimized only for the uniaxial case . The

minimization of 1 with respect to A for all three cases demonstrates that

there is also an optimum amount of reinforcement for those openings which do

not initially have an optimum shape. Table 2 gives the minimized values of 1,

within the constant, and the corresponding values of A for the uniaxial case

only.

TABLE 2 - MINIMIZED VALUES OF I AT OPTIMUM

VALUES OF A FOR A SQUARE OPENING

A ~2EI
A l6w

0.000001 .36268
0.1 .24854
0.2 .20936

0.3 .19546
0.4 .19199
0.412 .19195
0.5 .19324
0.6 .19671
0.7 .20120
0.8 .20610
0.9 .21109
1.0 .21600

As expected, the value of 2E I corresponding to A = .00001 10 is the

same as that of reference (5) for A - 0 (unreinforced). Table 2 also snows

the variation of I with respect to A and its minimum point at A = .412.

11



Figure 1 shows the stresses a , a , and T 0 for a reinforced square-

like opening (m = -.05) with A - .412 and also, for comparison, the equivalent

stress, aE  , based on the strain energy theory of failure and the value

of aB for the unreinforced opening subjected to uniaxial loading. The maximum

value, 1.43, of a in the reinforced case occurs approximately at a = 80*and

in the unreinforced case this maximum 2.47, occurs at approximately B = 70'.

Since the amount of area removed is not a constant by definition, in the

case of a square opening with rounded corners, the percentage of area replaced

can not be a constant either. For convenience, however, it can be referred to

the half-width of the square. Thus the value of A should be divided by I + m,

i.e., 0.95, and multiplied by 100 to obtain the reinforcement expressed as a

percentage of the area removed.

CONCLUSIONS

1. It has been shown that for openings in plates an optimum amount of rein-

forcement exists which corresponds to a minimum value of a strain energy

related integral.

2. It can be conjectured that the values of strain energy densities around a

reinforced opening are relatively smooth when this strain energy related

integral is a minimum.

3. The actual optimum values of reinforcement for a circular opening were

found to be 142%, 44.3%, and 29.2% of the area removed by the opening for

isotropic, uniaxial, and pure shear loadings, respectively.

4. The optimum values of reinforcement for a square-like opening were found

to be 94.7%, 43.4%, and 30.5% of the area removed by the opening for iso-

tropic, untaxial, and pure shear loadings, respectively.

12
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